
LIQUID FUNCTIONAL CALCULUS

KENDRIC SCHEFERS

Abstract. We develop a formalism of functional calculus for entire holomorphic functions in the
setting of Clausen and Scholze’s p-liquid vector spaces.
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1. Introduction

1.1. Classical functional calculus. Let k be a field, and let V be a vector space over k. The data
of a linear map T : V → V is equivalent to a choice of element in the set HomSet(∗,End(V )), where
End(V ) denotes the set of linear endomorphisms of V . Of course End(V ) has additional structure:
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it is canonically a k-vector space (in fact a k-algebra). There is an adjunction between Set and the
category Vectk

1 of k-vector spaces given by the forgetful functor from k-vector spaces to Set and
the free k-vector space construction on sets, which furnishes an equivalence

HomSet(∗,End(V )) ' HomVectk(k[x],End(V )).

This equivalence gives a functional calculus for polynomials—given a linear operator, you can act
by polynomials in this operator.

If k = C, we might consider topological vector spaces over C. If the topology on such a vector
space V is induced by a complete metric, such as when V is a Banach space, we can go further
and make sense of things like everywhere convergent power series, i.e. entire holomorphic functions
O(C), in this operator. In other words, if V is Banach, the equivalence above lifts as follows,

(1.1)

HomVectC(O(C),End(V ))

HomSet(∗,End(V )) HomVectC(C[x],End(V )),'

where the vertical arrow is restriction along the inclusion of C-vector spaces C[x]→ O(C). This lift
defines what we call the entire holomorphic functional calculus.

1.2. Functional calculus for liquid vector spaces.

1.2.1. Condensed vector spaces. Condensed sets are sheaves of sets defined on the site of profinite
sets equipped with the effective epimorphism topology. Condensed sets (nearly) form a topos, so one
may consider all manner of algebraic objects, such as rings and modules, defined internally to this
topos. A beautiful feature of this category is that it contains the category of compactly generated
topological spaces as a full subcategory. As a consequence, the category of compactly generated
topological C-vector spaces embeds fully faithfully into the category of condensed C-vector spaces,
and the latter is shown by Clausen and Scholze ([CS19]) to be an extremely well-behaved abelian
category.

The procedure of the previous section for obtaining a polynomial functional calculus goes through
mutatis mutandis for linear operators in the condensed topos Cond. The endomorphisms of a
condensed C-vector space V are a condensed set End(V ) equivalent to the internal mapping object
HomCond(∗,End(V )), and by adjunction, we obtain an equivalence,

HomCond(∗,End(V )) ' HomCond(C)(C[∗],End(V )),

where C[∗] denotes the free condensed C-vector space on the point and Cond(C) denotes the
category of condensed C-vector spaces. If V is in the image of the embedding of topological vector
spaces into condensed ones, this equivalence reduces to the polynomial functional calculus of the
previous section.

In the previous section, in order to extend the functional calculus from polynomials to entire
functions, we restricted our attention to complete topological vector spaces. In the condensed
setting, the role of complete topological vector spaces is played by p-liquid vector spaces.

1.2.2. Liquid vector spaces. The category of p-liquid vector spaces, for fixed 0 < p ≤ 1, is an
abelian category which serves as a well-behaved enlargement of the category of Banach spaces over
C. Roughly, it is defined as follows. To each (extremally disconnected2) profinite set S is assigned
a space of “measures,” denoted M<p(S). One can imagine that an element of M<p(S) assigns a
weight to each point in S. The points of S may themselves be considered a measure by sending

1This notation conflicts with our conventions in the rest of the paper where Vectk will denote the derived ∞-
category k-vector spaces, or, equivalently, the ∞-category of k-module spectra.

2See the discussion at the end of §3.2.
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s ∈ S to the Dirac measure assigning weight 1 to s and 0 to all other points of S; this gives a map
S → M<p(S). A p-liquid vector space V is one for which every map of condensed sets ϕ : S → V
extends to a map ϕ̃ : M<p(S) → V of condensed vector spaces. This extension can be thought of
as sending µ ∈ M<p(S) to the S-indexed sum of the images of the points s ∈ S with coefficients
given by the weights of µ—in other words, it can be thought of as sending a “measure” µ to the
“integral”

∫
S ϕdµ.

1.2.3. The main idea. Let V be a p-liquid C-vector space. A choice of endomorphism T : V → V
determines a map of condensed sets N → End(V ) by the assignment T 7→ Tn, where End(V ) is
the condensed C-algebra and the internal mapping object of Cond(C). Assume furthermore that
End(V ) is p-liquid. If we pretend for a moment that N is a profinite set, the property that End(V )
is p-liquid implies the existence of the dotted line in the following diagram,

(1.2)

HomCond(C)(M<p(N),End(V ))

HomCond(∗,End(V )) HomCond(N,End(V )),

'

because the vertical arrow is an equivalence. Compare diagram (1.2) to the diagram (1.1), in which
the classical functional calculus was defined by the lift indicated by the dotted line in the latter
diagram. The similarity between these two diagrams suggests the main idea behind our construction
of an extension of the liquid functional calculus from polynomials to entire holomorphic functions
on C.

Main Idea. Our strategy for defining a functional calculus for liquid vector spaces will be to identify
entire functions as a subspace of M<p(N). Using this approach, for a given operator T : ∗ → End(V ),

the operator f(T ) is obtained by evaluating the lift T̃ : M<p(N) → End(V ) on the measure
µf ∈M<p(N) associated to the entire function f .

Remark 1.3. Of course, N is not a profinite set, but this problem is easily solved by considering the
space N ∪ {∞}, which is (though it is not extremally disconnected).

1.3. Results. We define the measure µf ∈ M<p(N ∪ {∞}) associated to an entire function f
in Definition 5.4. Our definition is actually shown to given an element in the space M<p(N ∪
{∞}) in Proposition 5.5. Using µf , we define in Definition 5.6 the operator f(T ) ∈ End(V ) for
an endomorphism T of an object V of the derived ∞-category DBan(C,M<p) of p-liquid vector
spaces with Banach space cohomologies. By restricting our attention to objects of this category, we
guarantee that its space of endomorphisms is p-liquid.

The entire functional calculus defined in this way turns out to be compatible with the entire
classical functional calculus on Banach spaces. More precisely, in Corollary 5.10 we show that if V
is an object in the heart of DBan(C,M<p) (i.e. a Banach space viewed as complex concentrated in
degree 0) the operator f(T ) defined in Definition 5.6 coincides with the image of the bounded linear
operator obtained from the classical functional calculus on Banach spaces under the embedding of
Banach spaces into p-liquid vector spaces. Additionally, we show in Proposition 5.11 that the
induced maps on homology spaces given by f(T ) agrees with the maps obtained via the classical
functional calculus on Banach spaces by applying f to the induced maps on homology spaces given
by T .

As a trivial application of our results, we deduce a functional calculus for perfect complexes of
C-vector spaces in Theorem 6.10

1.3.1. Significance. The results described above allow one to make sense of the make sense of things
like the exponential of an automorphism of complexes of Banach spaces, up to p-liquid quasi-
isomorphism. The author has no immediate application in mind for such a device, but examples
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where one considers complexes of infinite-dimensional vector spaces with non-trivial topologies
abound in mathematical physics.

1.4. Remarks on general holomorphic functional calculus. Classically, there is a more gen-
eral theory of functional calculus for holomorphic functions defined only on a open neighborhood
Ω ⊂ C of the spectrum σ(a) of a given element a in a Banach algebra A. More precisely (following
[Rud91, Chapter 10]), fix an open subset Ω ⊂ C and let AΩ := {a ∈ A|σ(a) ⊂ Ω}. Let H(Ω) denote
the algebra of holomorphic functions on Ω, and let C(AΩ) denote the algebra of A-valued functions
on AΩ. Then the holomorphic functional calculus is an assignment

f 7→ f̃

which is an algebra isomorphism onto its image, as well as continuous in the sense that if fn → f

uniformly on compact subsets of Ω, then f̃n(a) → f̃(a) ∈ A. The operators f̃(a) are defined using
contour integration around a contour containing the spectrum σ(a).

We suspect that our functional calculus should extend to a full holomorphic functional calculus
for an endomorphism T of an object V ∈ DBan(C,M<p) and holomorphic functions defined on
an open set containing the spectrum of T , using as our definition of spectrum of T ∈ End(V ) the
support of V as a section of the category D(Liqp(C[T ])) considered as a sheaf over C. Doing so,
however, would require a systemic way of treating integrals of functions valued in liquid vector
spaces (and complexes thereof), which is outside the scope of this work.

2. Notation

Notation 2.1. If R is a classical associative ring, we may view it as an E1-algebra in Sp. We
let LModR denote the ∞-category of left R-module objects in Sp. This category has a canonical
t-structure, with respect to which LMod♥R is the abelian category of left R-modules. Note that

LModR is equivalent to the unbounded derived ∞-category of its heart, D(LMod♥R).
When R is commutative, it has a natural structure of an E∞-algebra, and we let ModR denote

the category of R-modules in spectra.

2.1. Morphisms. We use Prof to denote the category of profinite sets, i.e. compact Hausdorff
totally disconnected topological spaces.

We use the notation “HomC (−,−)” to denote the internal hom of a category C ; that is,
HomC (−,−) is always itself an object of C .

On the other hand, we use the notation “HomC (−,−)” to denote the ∞-groupoid (resp. set) of
morphisms in the ∞-category (resp. 1-category) C .

2.2. Non-abelian derived categories. We use Ani to denote the ∞-category of spaces, the
non-abelian derived category of finite sets.

2.3. Grothendieck universes. It is inevitable when working with higher categories that one will
encounter “large” collections of objects, i.e. collections that do not form sets. We adopt the same
approach these objects as Lurie outlines in §1.2.15 of [HTT], and which we recall below.

2.3.1. Strongly inaccessible cardinals.

Assumption 2.2. We assume that for each cardinal α0, there exists a strongly inaccessible cardinal
α ≥ α0.

Let U(α) denote the collection of all sets having rank < α. Then U(α) is a Grothendieck universe;
it satisfies all of the usual axioms of set theory.

Definition 2.3. A mathematical object is α-small if it belongs to U(α). It is essentially α-small if
it is equivalent (in whatever relevant sense) to an α-small object. We let Setα denote the category
of α-small sets.
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Outside of foundational work, mathematics takes place in a fixed Grothendieck universe, so when
an author like Lurie writes “small,” he has implicitly chosen a Grothendieck universe.

2.4. Glossary of categories. This work involves many different categories whose definitions and
differences are often subtle. This work also contains many results which may be of independent
interest to the reader. To facilitate the reader trying to read this work in a piecemeal fashion, we
furnish a glossary of categories below. We have tried to group the categories by theme. In what
follows, κ is an uncountable strong limit cardinal, and α > κ is a strongly inaccessible cardinal.

2.4.1. Glossary of categories.

Categories of purely algebraic objects.

• Ring is the ordinary category of rings.
– Ringα is the full subcategory of Ring on α-small rings.

• Grp is the ordinary category of groups.
– Grpα is the full subcategory of Grp on α-small groups.

• Ab is the ordinary category of abelian groups.
– Abα is the full subcategory of Ab on α-small abelian groups.

• D≥0(Ab) is the ∞-category of non-negative homologically graded chain complexes in Ab.
It is equivalent to the animation of Ab, Ani(Ab).

– D(Ab) is the stabilization of D≥0(Ab), also known as the unbounded derived ∞-
category of Ab.

• VectC is the unbounded derived∞-category of C-vector spaces, also know as the∞-category
of chain complexes of C-vector spaces with quasi-isomorphisms inverted.

– Vectf.d.C is ordinary category of finite dimensional C-vector spaces. They are the com-
pact projective generators of VectC.

Categories of categories

• Ĉat∞ is the category of all (i.e. not necessarily small) ∞-categories.
– Cat∞ is the category of small ∞-categories.

Categories of topological objects.

• Top is the ordinary category of topological spaces, whose morphisms are continuous func-
tions.

– Topκ is the full subcategory of Top on κ-compactly generated topological spaces.
• TRing is the ordinary category of topological rings, whose morphisms are continuous ring

homomorphisms.
– TRingκ is the full subcategory of TRing on objects whose underlying topological space

is κ-compactly generated.
• TGrp is the ordinary category of topological groups, whose morphisms are continuous group

homomorphisms.
– TGrpκ is the full subcategory of TGrp on objects whose underlying topological space

is κ-compactly generated.
• TVect is the ordinary category of topological C-vector spaces, whose morphisms are contin-

uous linear maps.
– TVectcomp

l.c. is the full subcategory of TVect on locally compact topological vector spaces
whose topology is induced by a complete metric.

• Ban is the ordinary category of complex Banach spaces, whose morphisms are bounded
linear operators.

Categories coming from condensed mathematics.

• Cond is the category of κ-condensed sets.
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– Cond(Ring) is the category of κ-condensed rings.
– Cond(Grp) is the category of κ-condensed groups.
– Cond(Ab) is the category of κ-condensed abelian groups.

• Cond(C ) is the category of κ-condensed objects in the ∞-category C .
• Cond(A) is the category of modules in Cond(Ab) over the condensed commutative ring A.

– ♥(A,M) is the full subcategory of Cond(A) determined by the analytic ring structure
(A,M), defined in Definition 4.9.

• D≥0(A) is the∞-category of modules in Cond(D≥0(Ab)) over the condensed animated ring
A.

– D≥0(A,M) is the full subcategory of D≥0(A) determined by the analytic animated ring
structure (A,M), defined in Definition 4.8.

• D(A) is the stable ∞-category given by the stabilization of D≥0(A).
– D(A,M) is the stabilization of D≥0(A,M).

• Liqp(C) is alternative notation for ♥(C,M<p), where (C,M<p) denotes the p-liquid analytic
ring structure on C.
• D(C,M<p) is the category D(A,M) listed above for the analytic animated ring (C,M<p).

– DBan(C,M<p) is the full subcategory of D(C,M<p) on objects whose homology spaces
lie in the essential image of the embedding Ban ↪→ Liqp(C).

3. Condensed mathematics

3.1. Condensed sets. Roughly speaking, a condensed set is a sheaf of sets on the pro-étale site
of a geometric point, denoted ∗proét. Explicitly, ∗proét is the site given by the category of profinite
sets, denoted Prof, with open covers given by finite families of jointly surjective maps. For the sake
of clarity, we recall the precise definition.

Definition 3.1. Let U(α) be a fixed Grothendieck universe. For any α-small, ordinary category
C , the category Proα(C ) is defined as the full subcategory of Fun(C , Setα)op on those functors
which are limits of cofiltered diagrams of functors representable under the Yoneda embedding
C ↪→ Fun(C , Setα)op. We set Profα := Proα(Fin).

Remark 3.2. As a category, Profα is equivalent to the category of compact Hausdorff totally dis-
connected topological spaces whose underlying sets are α-small.

There is a problem, however, naively defining condensed sets as sheaves on this site. Given any
choice of Grothendieck universe U(α), the category Profα is large, so it is not a good idea to work
with the category of sheaves on it since such a category would not be a topos. Clausen-Scholze
circumvent this problem by working with a modification of Profα obtained as follows. Choose an
uncountable strong limit cardinal κ < α, and instead consider the category of κ-small profinite sets,
denoted Profκ, rather than Profα.

Definition 3.3 ([CS19, Definition 2.1]). The site ∗κ–proét is the site of κ-small profinite sets S with
covers given by finite families of jointly surjective maps.

Remark 3.4. Note that Profκ is an α-small category; this follows from the definition of strongly
inaccessible cardinal.

Clausen-Scholze define the category of κ-condensed sets as the category of Setα-valued (resp.
Grpα-valued, Ringα-valued, Abα-valued) sheaves on ∗κ–proét, which they denote by Condκ (resp.
Condκ(Grp), Condκ(Ring), Condκ(Ab)). For any two choices of uncountable strong limit cardinal
κ′ > κ, they show that there is a fully faithful embedding of κ-condensed sets into κ′-condensed
sets ([CS19, Proposition 2.9]). They then define the category of condensed sets to be the filtered
colimit,

lim−→
κ

Condκ
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(resp. lim−→κ
Condκ(Grp), lim−→κ

Condκ(Ring), lim−→κ
Condκ(Ab)), taken in some suitable category of

categories.

Convention 3.5. In the sequel, we fix a Grothendieck universe U(α) by fixing a strongly inacces-
sible cardinal α. Having fixed a Grothendieck universe, we omit any reference to α in our notation.
For example, Setα, Proα, and Profα, respectively, will be denoted by Set, Pro, and Prof, respectively.

3.1.1. Condensed sets as replacements for topological spaces. Clausen and Scholze defined con-
densed sets as replacements for topological spaces that have better behavior when considered with
algebraic structures. Strong evidence for their suitability as a replacement is given by the following
proposition of Clausen-Scholze.

Proposition 3.6 ([CS19, Proposition 1.7]). Let X be a topological space, and denoted by X the
condensed set given by the assignment

S 7→ Cont(S,X),

for S ∈ Profκ, where Cont(S,X) denotes the set of continuous functions S → X. Then (−) :
Topκ → Condκ is a fully faithful functor from the category of κ-compactly generated topological
spaces to κ-condensed sets.

Remark 3.7. The functor (−) also induces fully faithful embeddings of TGrpκ and TRingκ into

Condκ(Grp) and Condκ(Ring), respectively.

Remark 3.8. If R is a topological ring with the discrete topology, R is a constant sheaf on Profκ.
Note that the image, for example, of the topological field R under (−), however, is not a constant

sheaf. In particular, modules in Condκ(Ab) over each of R and Rdisc are different.

Unlike the category of topological abelian groups, the category of condensed abelian groups forms
an abelian category with extremely nice properties.

Theorem 3.9 ([CS19, Theorem 2.2]). The category of κ-condensed abelian groups is an abelian
category which satisfies Grothendieck’s axioms (AB3), (AB4), (AB5), (AB6), (AB3*) and (AB4*),
to wit: all limits (AB3*) and colimits (AB3) exist, arbitrary products (AB4*), arbitrary direct sums
(AB4) and filtered colimits (AB5) are exact, and (AB6) for any index set J and filtered categories
Ij, j ∈ J , with functors i 7→Mi from Ij to κ-condensed abelian groups, the natural map

lim−→
(ij∈Ij)j

∏
j∈J

Mij →
∏
j∈J

lim−→
ij∈Ij

Mij

is an isomorphism. Moreover, the category of κ-condensed abelian groups is generated by compact
projective objects.

Remark 3.10. A variant of the above theorem holds for the category of all condensed abelian
groups, lim−→κ

Condκ(Ab).

3.2. Condensed objects. As a means of proving the various properties of Cond, Clausen-Scholze
take advantage of the fact that condensed sets are determined by their values on very special types
of profinite sets, called extremally disconnected profinite sets.

Proposition 3.11 ([CS19, Proposition 2.7]). Consider the site of κ-small extremally disconnected
profinite sets, denoted ExtProfκ, with covers given by finite families of jointly surjective maps. Its
category of sheaves is equivalent to κ-condensed sets via restriction from profinite sets.

Motivated by the proposition, Clausen-Scholze define κ-condensed objects of a category C , more
generally, as follows.
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Definition 3.12 ([CS20, Definition 11.7]). Let C be an∞-category that admits all small colimits.
The category of κ-condensed objects of C , denoted Condκ(C ), is the category of contravariant
sheaves from ExtProfκ to C that take finite coproducts to products.

Remark 3.13. If C , in addition, admits all small limits, then Condκ(C ) can be identified with the
category of C -valued sheaves on ExtProfκ.

As above, for any two choices of cardinals, κ′ > κ, there is a fully faithful functor,

Condκ(C )→ Condκ′(C ),

given as the left adjoint to the forgetful functor from Condκ′(C ) to Condκ(C ). We may likewise
form the category of condensed objects in C as the filtered colimit,

lim−→
κ

Condκ(C ),

taken in, Ĉat∞, the ∞-category of all (e.g. not necessarily small) ∞-categories.

3.2.1. Pyknotic objects. While Clausen and Scholze were developing their theory of condensed sets,
Barwick and Haine had been studying essentially the same notion, which they call pyknotic sets.
The difference between pyknotic sets and condensed sets is purely set-theoretic in nature. We refer
the reader to §0.3 of [BH19] a discussion on the differences between the two theories.

For our purposes, it will be useful to deploy some results from theory of pyknotic objects in the
current setting of condensed objects. In order to do so, we briefly recall the notion of pyknotic set.
In the notation of the previous section: assume the existence of a smallest strongly inaccessible
cardinal α′ > α. The category Profα is small in the universe U(α′), so sheaves on it form a topos
in this larger universe.

Definition 3.14. The category of pyknotic sets is defined to be the category of Setα′-valued sheaves
on Profα. More generally, given an ∞-category C , the category of pyknotic objects of C , denoted
Pykα(C ), is subcategory of contravariant functors from ExtProfα to C that take finite coproducts
to products.

Remark 3.15. As with condensed objects, it C admits all small limits, then

Pykα(C ) = ShvC (ExtProfα).

Though we have fixed α and α′ both to be strongly inaccessible cardinals, the results in the
pyknotic literature hold equally well if we take α to be an uncountable strong limit cardinal and
α′ > α a strongly inaccessible cardinal. In other words, we may take α to be κ of the previous
section, and α′ to be α of the previous section. With these choices, it is clear that

Condκ(C ) = Pykκ(C ).

As such, we freely use the results of [BH19] below when working with κ-condensed objects.

3.2.2. Condensed objects as sheaves on Profκ. We would like to prove an analogue of [CS19, Propo-
sition 2.7] for sheaves on Profκ with values in categories other than Set. As observed in Remark 3.4,
ExtProfκ and Profκ are small sites, so each determines an ∞-topos. By abuse of notation, we let
Profκ and ExtProfκ denote the ∞-topoi determined by each site.

Proposition 3.16. Let P̂rofκ denote the hypercompletion of Profκ. Then P̂rofκ and ExtProfκ are
equivalent ∞-topoi.

Proof. This is [BH19, Warning 2.2.2] and [BH19, Corollary 2.4.4]. �
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Corollary 3.17. Let C be a presentable ∞-category. Restriction to extremally disconnected profi-
nite sets determines an equivalence of categories,

ShvC (P̂rofκ)
'−→ ShvC (ExtProfκ).

In particular, if C additionally admits all small limits, then

ShvC (P̂rofκ) ' Condκ(C ).

Proof. Not that the category of C -valued sheaves on any ∞-topos X is given by the Lurie tensor

product of presentable ∞-categories, X⊗C . Since, P̂rofκ
'−→ ExtProfκ via restriction by the above

proposition, it follows that

ShvC (P̂rofκ) ' P̂rofκ ⊗ C
'−→ ExtProfκ⊗C ' ShvC (ExtProfκ),

as desired. �

Note that since P̂rofκ → Profκ is fully faithful, the functor ShvC (P̂rofκ)→ ShvC (Profκ) is also
fully faithful. The significance of Corollary 3.17 is that it allows us to take sections of condensed
objects of C on arbitrary κ-small profinite sets though condensed objects are a priori defined only
on extremally disconnected profinite sets, as shown in the following lemma.

Lemma 3.18. Suppose that C is a complete presentable ∞-category. Then there is a fully faithful
embedding,

Condκ(C ) ↪→ ShvC (Profκ).

Proof. By Corollary 3.17, it suffices to show that ShvC (P̂rofκ) embeds fully faithfully into ShvC (P̂rofκ).

First note that the inclusion i∗ : P̂rofκ ⊂ Profκ is a fully faithful geometric morphism (this is true
for the inclusion of the hypercomplete objects of any ∞-topos). As such, it admits a left exact left

adjoint i∗ : Profκ → P̂rofκ. Pointwise composition with (i∗)op determines a functor,

Fun(P̂rof
op

κ ,C )
i∗−→ Fun(Profop

κ ,C )

which is fully faithful because i∗ is fully faithful. Moreover, since i∗ is left adjoint, (i∗)op preserves
small limits, meaning i∗ restricts to a functor,

ShvC (P̂rofκ)
i∗
↪−→ ShvC (Profκ),

as desired. �

3.3. Important convention. Throughout the remainder of this paper, we fix an uncountable
strong limit cardinal κ and work with objects in Condκ(C ). In doing so, we will omit κ from all of
our notation. In particular, we will use Cond(C ), Prof, and ExtProf to denote Condκ(C ), Profκ,
and ExtProfκ, respectively. When we say “condensed” we mean “κ-condensed.”

Warning 3.19. This is a significant, and potentially confusing, departure from the conventions of
Clausen-Scholze and the rest of the condensed mathematics literature; Cond(C ) universally denotes
the colimit lim−→κ

Condκ(C ). Thus, for the sake of clarity, we reiterate: Cond(C ) for us denotes the

category of κ-condensed objects of C , for some fixed κ.

3.4. Miscellanea. We state and prove below a handful of results that will be useful for our pur-
poses.
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3.4.1. Top embeds fully faithfully into condensed anima. In the next section, we would like to view
the topological fields R and C not only as condensed rings under the embedding of Remark 3.7,
but also as condensed animated (meaning simplicial) rings.

Lemma 3.20. There is a fully faithful functor,

Top→ Cond(Ani).

Proof. Given any cocomplete, compactly generated category C , there is an inclusion C → Ani(C ).
Letting C = Cond, we obtain a fully faithful functor Cond→ Ani(Cond). Using [CS20, Proposition
11.8], this gives a fully faithful functor Cond → Cond(Ani). The desired functor is then obtained
by composing this functor with the embedding Top ↪→ Cond from Proposition 3.6. �

Remark 3.21. Obviously, similar results hold for TGrp and TRing.

3.4.2. Stabilization commutes with taking condensed objects.

Lemma 3.22. Let C be a presentable ∞-category. Then there is a natural equivalence of ∞-
categories,

(3.23) Sp(Cond(C )) ' Cond(Sp(C )).

Proof. Recall that, for any presentable ∞-category D , the category of D-valued sheaves on any
∞-topos X is given by the Lurie tensor product3,

ShvC (X) ' C ⊗ X

(see [SAG, Remark I.1.3.1.6]). In particular, Cond(Ani) is the ∞-topos of sheaves on the small site
{∗}proétκ , so ShvSp(C )(Cond(Ani)) ' Sp(C )⊗Cond(Ani). On the other hand, the stabilization of a

presentable ∞-category C admits a characterization as the Lurie tensor product of C with Sp4,

Sp(C ) ' Sp⊗C .

Together, these two facts reduce (3.23) to the claim that,

Sp⊗(Cond(Ani)⊗ C ) ' Cond(Ani)⊗ (Sp⊗C ).

But this is clear from the fact that the ∞-category of presentable ∞-categories, PrL, is symmetric
monoidal under the Lurie tensor product. �

3.4.3. Stabilization commutes with taking module objects.

Lemma 3.24. Suppose that X is an ∞-topos, and let O ∈ X be a grouplike commutative algebra
object. Then there is an equivalence of stable ∞-categories,

Sp(ModO(X)) ' ModOΣ
(Sp(X)),

where OΣ denotes the image of O in Sp(X).

Proof. We note that, by [SAG, Remark I.1.3.5.1], there is a canonical equivalence,

ShvCAlg(Sp)(X) ' CAlg(ShvSp(X)).

The reasoning in that remark applies to prove to a similar statement for CAlg(S). Namely the
forgetful functor CAlg(S) → S is conservative and preserves small limits by [HA, Lemma 3.2.2.6
and Corollary 3.2.2.5]. It follows that we have a canonical equivalence,

ShvCAlg(S)(X) ' CAlg(X).

3See [HA, §4.8] for the definition of the Lurie tensor product of ∞-categories.
4See [HA, Example 4.8.1.23] for a proof of this fact.
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We now note that the pointwise application of the suspension functor, Σ∞ : S → Sp, induces a
functor, FΣ∞ : PShvS(X)→ PShvSp(X), which descends to a functor of sheaves,

X→ ShvSp(X),

given by L ◦ FΣ∞ , where L is the sheafification functor, PShvSp(X) → ShvSp(X). This functor is
symmetric monoidal with respect to the Cartesian monoidal structure on X and the smash product
monoidal structure on ShvSp(X), so it induces a functor,

CAlg(X)
Σ−→ CAlg(ShvSp(X)).

Let OΣ denote the image of O ∈ CAlg(X) under the above functor. Now we have the following
chain of equivalences:

Sp(ModO(X)) ' Sp(XBar(O)/)

' Sp⊗(XBar(O)/)

' Sp(X)Σ(Bar(O))

' Sp(X)Bar(OΣ)

' ModO(Sp(X)),

where we have used the equivalence ModO(X) ' XBar(O)/ (see [HA, Remark 5.2.6.28]); the fact
that Bar(O) is again an object of CAlg(X) under the equivalence given by the forgetful functor

CAlg(X)
'−→ X; and the fact that Σ commutes with geometric realizations as a left adjoint, so

Bar(OΣ) ' Σ(Bar(O)). �

4. Analytic and analytic animated rings

4.1. Analytic rings. Let us recall the notion of analytic ring found in [CS19, Lecture VII].

Definition 4.1. A pre-analytic ring (A,M) is a condensed ring A together with a functor,

M[−] : ExtProf → ModA(Cond(Ab))

taking finite disjoint unions to products, and a natural transformation of functors, ExtProf →
ModA(Cond(Ab)),

A[S]→M[S].

An analytic ring is a pre-analytic ring (A,M) such that for any complex,

C : · · ·Ci → · · · → C1 → C0 → 0,

of A-modules in condensed abelian groups, such that all Ci are direct sums of objects of the form
M[T ] for varying extremally disconnected T , the map

RHomA(M[S], C)→ RHomA(A[S], C)

of complexes of condensed abelian groups is a quasi-isomorphism for all extremally disconnected
sets S.

Remark 4.2. Heuristically, a pre-analytic ring is supposed to be a ring equipped with a notion in
condensed abelian groups of “free” module over that ring, given by the functor in the definition.
The condition in the definition of analytic ring specifies that this notion of “free” module should
be well-behaved: maps into particular kinds of A-modules cannot distinguish between the “free”
modules M[−], and free A-modules in the category of condensed abelian groups.
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4.2. Derived category of condensed modules. There is a related notion of analytic animated
ring, in which both the ring A and its space of measures M are allowed to be objects in condensed
anima.

Notation 4.3. Let A be an animated condensed ring5. Let D≥0(A) denote the prestable∞-category,
ModA(Cond(D≥0(Ab))), the category of A-modules in animated condensed abelian groups.

We denote the stabilization of D≥0(A) by D(A) := Sp(D≥0(A)). It is a stable ∞-category with
a natural t-structure whose connective part is D≥0(A). We observe that D(A) admits a forgetful
functor oblvSp : D(A)→ Cond(Sp) which we call taking the underlying condensed spectrum. Indeed,
we have the following chain of equivalences,

D(A) := Sp(ModA(Cond(D≥0(Ab))))

' ModA(Sp(Cond(D≥0(Ab))))(Lemma 3.24)

' ModA(Cond(D(Ab)))(Lemma 3.22)

' ModA(Cond(Sp)).

Under this equivalence, oblvSp is simply the functor on ModA(Cond(Sp)) of forgetting the A-module
structure.

When A is commutative, both D≥0(A) and D(A) are canonically symmetric monoidal categories.
whose symmetric monoidal structure is induced by the commutative algebra A (see [HA, Theorem
3.3.3.9]).

Lemma 4.4. The canonical symmetric monoidal structure on D(A) (resp. D≥0(A)), induced by the
commutative algebra A, is closed. That is, the symmetric monoidal product admits a right adjoint,
which we denote by HomD(A)(−,−) (resp. HomA(−,−)), called the internal hom.

Proof. We note that A is a sheaf of E∞-rings on the ∞-topos ExtProf, and D(A) is the category
of modules6over A in ShvSp(ExtProf). As mentioned, this category has a canonical symmetric
monoidal structure, whose product we denote by ⊗A. By [SAG, Proposition I.2.1.0.3], ⊗A preserves
small colimits in both variables, so by the Adjoint Functor Theorem, it admits a right adjoint, which
is HomD(A)(−,−).

Recall that D≥0(A) is tautologically the connective part of the t-structure on D(A), and that A

is a connective sheaf of E∞-rings on ExtProf. By [SAG, Proposition I.2.1.1.1(b)], D≥0(A) is closed
under the tensor product ⊗A and contains the unit object, so D≥0(A) is symmetric monoidal under
⊗A. Moreover, D≥0(A) is closed under small colimits, and reflects all colimits in D(A), so ⊗A

preserves small colimits in D≥0(A), as well. Thus, ⊗A admits a right adjoint in D≥0(A) called
HomA(−,−), which, by uniqueness of the right adjoint, must be the restriction of HomD(A)(−,−).

�

Remark 4.5. A similar argument as presented in the proof of Lemma 4.4 proves the existence of an
internal hom for ModA(Cond(Ab)) for A a discrete condensed commutative ring.

4.3. Analytic animated rings.

Definition 4.6. A pre-analytic animated ring (A,M) is an animated condensed ring A together
with a functor,

M[−] : ExtProf → D(A)

that preserves finite coproducts, and a natural transformation,

A[S]→M[S],

of condensed anima.

5By [CS20, Lemma 11.8], we may permute the adjectives “animated” and “condensed” with impunity.
6ModA in the notation of Lurie’s [SAG].
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An analytic animated ring is a pre-analytic animated ring (A,M) with the property that for any
object C ∈ D≥0(A) that is a sifted colimits of objects of the form M[T ] for varying extremally
disconnected T , the natural map,

(4.7) HomA(M[S], C)→ HomA(A[S], C),

is an equivalence of condensed anima for all extremally disconnected profinite sets S.

To any analytic animated ring (A,M) we may associate the subcategory of D≥0(A) of all such
objects C satisfying the condition (4.7) for all profinite sets S. More precisely, we have the following
definition found in [CS20], whose notation we have modified for our purposes.

Definition 4.8. Let D≥0(A,M) ⊂ D≥0(A) denote the full ∞-subcategory spanned by all objects
C ∈ D≥0(A) such that the natural map (4.7) is an equivalence of condensed anima for all extremally
disconnected profinite S.

One may similarly define an abelian subcategory of ModA(Cond(Ab)) for a given analytic ring.

Definition 4.9. Let (A,M) be an analytic ring as defined in Definition 4.1. We denote by♥(A,M) ⊂
ModA(Cond(Ab)) the full subcategory of all objects C ∈ ModA(Cond(Ab)) such that the map,

HomA(M[S], C)→ HomA(A[S], C)

is an isomorphism for all extremally disconnected profinite S.

The following example of an analytic ring will be the only one we use in this paper.

Example 4.10. Fix 0 < p ≤ 1, and consider the pair (R,M<p)
7. This is an analytic ring by [CS20,

Theorem 6.5], and the abelian category Liqp(R) := ♥(R,M<p) is called the category of p-liquid
R-vector spaces. Likewise, the pair (C,M<p) is also an analytic ring, whose category ♥(C,M<p) we
also denote Liqp(C).

Warning 4.11. Note that Rdisc is not p-liquid as a condensed vector space.

The following lemma shows that (C,M<p) is also an analytic animated ring, under the inclusion
of condensed rings into condensed animated rings (see Lemma 3.20).

Lemma 4.12. Suppose that (A,M) is an analytic ring. Then (A,M) is also an analytic animated
ring.

As such, to each analytic ring (A,M) we may associate two categories:

− the abelian category ♥(A,M) associated to (A,M) as an analytic ring,
− and the prestable ∞-category D≥0(A,M) associated to (A,M) as an analytic animated

ring.

We will use following proposition from [CS20] to relate these two categories to each other.

Proposition 4.13 ([CS20, Proposition 12.4]). Let (A,M) be an analytic animated ring. The ∞-
category D≥0(A,M) is generated under sifted colimits by the objects M[S] for varying extremally
disconnected profinite sets S, which are compact projective objects of D≥0(A,M). The full ∞-
subcategory

D≥0(A,M) ⊂ D≥0(A)

is stable under all limits and colimits and admits a left adjoint

−⊗A (A,M) : D≥0(A)→ D≥0(A,M)

characterized as the unique functor commuting with colimits that sends A[S] to M[S].

7See Definition 6.3 and page 35 of [CS20, Lecture VI] for the definition of M<p.
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The∞-category D≥0(A,M) is a prestable. Its heart is the full abelian subcategory of Modπ0A(Cond(Ab))
generated under colimits by π0M[S] for varying S. An object C ∈ D≥0(A) lies in D≥0(A,M) if and
only if all Hi(C) lie in D≥0(A,M)♥.

If A has the structure of an animated condensed commutative ring so that D≥0(A) is naturally
a symmetric monoidal ∞-category, there is a unique symmetric monoidal structure on D≥0(A,M)
making −⊗A (A,M) symmetric monoidal.

Corollary 4.14. Let (A,M) be an analytic ring. The heart of the prestable ∞-category D≥0(A,M)
is the abelian category of, ♥(A,M). Moreover, D≥0(A,M) is the connective part of a t-structure,
compatible with filtered colimits, on a stable presentable ∞-category which we denote by D(A,M).

Proof. By Proposition 4.13, the heart of D≥0(A,M) is the full subcategory of condensed A-modules
generated under colimits by M[S] for varying extremally disconnected profinite S. But by [CS19,
Proposition 7.5], the collection M[S] for S extremally disconnected are a family of compact projec-
tive generators for ♥(A,M). Thus, D≥0(A,M)♥ and ♥(A,M) are two abelian categories generated
under colimits by the same full subcategory C c.p. ⊂ ModA(Cond(Ab)) on objects, {M[S]}S∈ExtProf .
Moreover, objects of C c.p. are compact projectives in both ♥(A,M) and D≥0(A,M)♥. Thus,
♥(A,M) ' D≥0(A,M)♥. The remainder of the claim follows from the fact that D≥0(A,M) is
prestable. �

The following corollary is immediate from Proposition 4.13 and Corollary 4.14.

Corollary 4.15. Let (A,M) be an analytic ring. An object C ∈ D(A) lies in D(A,M) if and only
if Hi(C) ∈ ♥(A,M) for all i.

Remark 4.16. Clearly, the results of this section involving D(A,M) are equally valid for its bounded
variations: Db(A,M), D−(A,M), and D−(A,M).

4.4. The derived category of ♥(A,M).

4.4.1. We fix an analytic ring (A,M) for the remainder of this section. We let Cond(A) :=
ModA(Cond(Ab)).

4.4.2.

Proposition 4.17. The category ♥(A,M) is a Grothendieck abelian category.

Proof. Recall that a Grothendieck abelian category is an abelian category that possesses arbitrary
coproducts, in which filtered colimits are exact, and which has a single generator8. Observe that
Cond(A) is a complete and cocomplete abelian category with exact filtered colimits by [Stacks,
Lemma 18.14.2] because it is the category of modules over a sheaf of rings on the topos, Cond(Ab).

By [CS19, Proposition 7.5], ♥(A,M) is a full subcategory of Cond(A) that is stable under ar-
bitrary limits and colimits, meaning that limit and colimits over arbitrary diagrams in Cond(Ab)
whose terms lie in ♥(A,M) also lie in ♥(A,M). As mentioned above, Cond(A) admits all colim-
its and limits, so ♥(A,M) possesses all colimits, arbitrary coproduct in particular, and limits, as
well. Since filtered colimits in Cond(A) are exact, it suffices to show that the the natural inclu-
sion ♥(A,M) ↪→ Cond(A) is an exact functor. But this is clear as the inclusion functor preserves
arbitrary limits and colimits9.

It remains to show that ♥(A,M) has a generator. By [CS20, Theorem 6.5], it is generated by
compact projective objects, {M[S]}S∈Prof . We claim that

⊕
S∈Prof M[S] is such a generator. To

show that it generates ♥(A,M), we must show that for any two distinct morphisms f, f ′ : X → Y ,

8More succinctly: an AB5 category with a generator.
9Indeed, since ♥(A,M) ⊂ Cond(Ab) is a full subcategory, any limit cone in ♥(A,M) is also a limit cone in

Cond(Ab); and since ♥(A,M) is stable under limits, the limit formed in Cond(Ab) is also the limit formed in
♥(A,M). Ditto for colimits and co-cones.
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there exists a morphism g :
⊕

S∈Prof M[S] → X, such that f ◦ g 6= f ′ ◦ g. Since {M[S]}S∈Prof are
a collection of generators for ♥(A,M), there exists such a morphism g0 : M[S0] → X for some
S0 ∈ Prof. Now let g be the morphism induced by g0 and the zero morphism 0 : S → X for all
S 6= S0 via the universal property of the direct sum. It is clear that this satisfies f ◦ g 6= f ′ ◦ g, so
we are done. �

As a Grothendieck abelian category, the unbounded derived ∞-category of ♥(A,M) is a pre-
sentable stable ∞-category with a well-behaved t-structure10.

Proposition 4.18. There is an equivalence of categories,

D(♥(A,M)) ' D(A,M).

Proof. It suffices to furnish an equivalence of Grothendieck prestable∞-categories, D(♥(A,M))≥0 '
D≥0(A,M).

Let D≥0(A,M)c.p. denote the full subcategory of compact projective objects of D≥0(A,M). Since
D≥0(A,M) is projectively generated and admits all small colimits, it is equivalent to the non-abelian
derived category of a minimal model11 of D≥0(A,M)c.p., which is closed under finite coproducts
by the definition of analytic animated ring. The latter category is a 1-category, which are always
trivially minimal. Thus, there is an equivalence,

PΣ(D≥0(A,M)c.p.) ' D≥0(A,M).

We remark that D≥0(A,M)c.p. is an additive ∞-category because it contains the zero object in
condensed animated A-modules, M[∅] ' 0, and is closed under finite finite biproducts; it is also small
because it is a full subcategory of a locally small category (D≥0(A,M)) whose collection of objects
is indexed by the small category ExtProf. As such, D≥0(A,M) is the non-abelian derived category
of a small additive∞-category, so by [SAG, Remark C.1.5.9] and [SAG, Proposition C.5.3.4], it is a
0-complicial complete Grothendieck prestable ∞-category. This combination of adjectives implies,
by [SAG, Corollary C.5.9.7], that the inclusion of the heart, ♥(A,M) ↪→ D≥0(A,M), extends to an
equivalence,

(4.19) D̂(♥(A,M))≥0
'−→ D≥0(A,M),

of ∞-categories.
By [SAG, Proposition C.5.9.2], the completion functor on Grothlex

∞ restricts to an equivalence of
categories,

Grothch,lex
∞

(̂−)−−→
'

Grothcomp,lex
∞ ,

between anticomplete Grothendieck prestable ∞-categories and complete Grothendieck prestable
∞-categories. By the universal property of the unseparated derived prestable ∞-category ([SAG,
Corollary C.5.8.9]), there exists a map

(4.20) qD(♥(A,M))≥0 → D≥0(A,M)

extending the inclusion of the heart. By unraveling the definitions, we see that this map (which is

also the map in [SAG, Corollary C.5.8.11]) is sent under (̂−) to precisely the functor (4.19). Since

(̂−) is an equivalence of categories, it follows that (4.20) is also an equivalence.

Thus, we have that qD(♥(A,M))≥0 ' D̂(♥(A,M))≥0 by (4.19) and (4.20). We claim that this

implies that qD(♥(A,M))≥0 ' D(♥(A,M)). By [SAG, Theorem C.5.4.9], D(−)≥0 : Grothlex
ab →

Grothlex,sep
∞ is the left adjoint to the functor of restriction to the heart. That is,

LFunlex(D(A )≥0,C ) ' LFunlex(A ,C♥),

10See [HA, Proposition 1.3.5.9 and Proposition 1.3.5.21].
11See [HTT, Definition 2.3.3.1] for the definition of a minimal ∞-category. A minimal model of an ∞-category C

is a subcategory of C which is both minimal and equivalent to C .
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where LFunlex(−,−) denotes the morphisms of Grothlex,sep
∞ and Grothlex

ab
12. On the other hand,

qD(−)≥0 is the left adjoint in Grothlex
∞ to the functor of restriction to the heart by [SAG, Corollary

C.5.8.9]. The functor C 7→ C sep taking a prestable category to its separable quotient is left adjoint

to the inclusion, Grothlex,sep
∞ → Grothlex

∞ , by [SAG, Corollary C.3.6.2]. By the essential uniqueness
of adjoint functors, we therefore have

(qD(−)≥0)sep '−→ D(−)≥0.

But now observe that qD(−)≥0 is complete, and therefore already separated, so qD(−)≥0 ' (qD(−)≥0)sep.
All together, we obtain:

D(♥(A,M))≥0 ' qD(♥(A,M))≥0

' D̂(♥(A,M))≥0

' D≥0(A,M),

which completes the proof. �

Proposition 4.21. Both ♥(A,M) and D(A,M) are closed symmetric monoidal categories with re-
spect to the symmetric monoidal structures specified in [CS19, Proposition 7.5] and [CS20, Proposi-
tion 12.4], respectively. Moreover, ⊗D−(A,M) is the left derived functor of ⊗♥(A,M), and HomD+(A,M)

is the right derived functor of Hom♥(A,M).

Proof. By Proposition 4.13, the left adjoint, −⊗A (A,M) is symmetric monoidal. Thus, the tensor
product in D(A) has a right adjoint, denoted HomD(A)(−,−), the tensor product in D(A,M)

also has a right adjoint, given by HomD(A)(−,−) ⊗A (A,M). The same argument shows that the

application of the left adjoint to the inclusion ♥(A,M) ↪→ ModA(Cond(Ab)) (the liquidification if
(A,M) were (C,M<p)) to HomCond(A)(−,−) gives the internal hom in ♥(A,M).

The claim that ⊗D−(A,M) is the left derived functor of ⊗♥(A,M) follows immediately from Proposi-
tion 4.18 and the uniqueness of left derived functors, Indeed, if P ∈ ♥(A,M), then P⊗− determines
a right t-exact functor13,

P ⊗− : D−(♥(A,M))→ D−(A,M),

that restricts to P⊗♥(A,M)− on the hearts. This functor is right exact as it commutes with colimits;

so, by [HA, Theorem 1.3.3.2], it is the left derived functor of ⊗♥(A,M) (noting that D−(A,M) is
left-complete).

The claim that HomD+(A,M) is the right derived functor of Hom♥(A,M) now follows immediately.
�

5. Functional calculus via condensed mathematics

5.0.1. Fix 0 < p ≤ 1.

5.0.2. We now specialize the results of the previous section to the analytic ring (C,M<p) recalled
in Example 4.10.

The theory of p-liquid vector spaces, i.e. objects of Liqp(C), is an excellent framework in which to
do functional analysis. Many of the most commonly encountered types of topological vector spaces
are p-liquid vector spaces, which, as seen above, enjoy great homological properties as a category.
Banach spaces, viewed as p-liquid vector spaces, will be our main objects of interest.

12This is Lurie’s notation in [SAG, Appendix C]. When both arguments of LFun(−,−) are presentable categories
(such as is the case for Grothendieck prestable categories), LFun denotes functors that preserve small colimits. The
superscript “lex” denotes those functors which further preserve finite limits.

13Because it tautologically restricts to a symmetric monoidal functor on D≥0(A,M).
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5.1. The category of Banach spaces. We consider the following two categories of topological
vector spaces:

(i) Let TVectcomp
l.c. denote the category of complete14locally convex topological C-vector spaces

with morphisms given by continuous linear operators.
(ii) Let Ban denote the category of complex Banach spaces with morphisms given by bounded

linear maps

There is an obvious forgetful functor oblv : Ban → TVectcomp
l.c. sending a Banach space to

its underlying locally convex topological vector space. The functor oblv is fully faithful; every
continuous linear operator between Banach spaces is bounded.

It is shown in [CS20] that Ban embeds fully faithfully into p-liquid vector spaces as follows.
Complete locally convex topological spaces are compactly generated, so they embed into condensed
sets (see discussion after [CS20, Definition 3.1]). Moreover they are M-complete in the sense of
[CS20, Definition 4.1] by [CS20, Proposition 3.4], so they are p-liquid by the discussion at the start
of [CS20, §VI]. The embedding of Banach spaces into p-liquid spaces factors as

(5.1) Ban ↪→ TVectcomp
l.c. ↪→ Liqp(C).

Using this embedding, we make the following definition.

Definition 5.2. Let DBan(C,M<p) denote the full subcategory of D(C,M<p) spanned by objects
whose homology spaces lie in the essential image of the embedding Ban ↪→ Liqp(C).

5.2. Classical functional calculus. We briefly review the classical theory of functional calculus
on Banach spaces. Our reference for the content of this section is the introductory paragraphs of
[Rud91, Chapter 10].

5.2.1. Motivation of functional calculus. Given a Banach space V ∈ Ban, and a bounded linear
operator T : V → V , the symbol “Tn” has a clear, unambiguous meaning for each non-negative
integer n. For n > 0, Tn is the n-fold composition of T with itself, and T 0 = I. Likewise, given
a polynomial f(z) with complex coefficients, the symbol “f(T )” has a clear meaning as well. The
purpose of functional calculus is to try and extend the definition of symbols “f(T )” to include
functions f which are holomorphic on an open neighborhood of C containing the spectrum of T .

5.2.2. This is easily achieved in the classical setting by observing that the space of bounded
endomorphisms, EndBan(V ), is itself a Banach space under the strong operator norm. In fact, it is
a Banach algebra under the composition of bounded operators.

The following is an easy result in classical functional analysis that uses the fact that polynomials
are dense inside the space the space of holomorphic functions.

Proposition 5.3. Let A be a Banach algebra, a ∈ A be an element, and f(z) be an entire function
of one complex variable. Then there is a unique element f(a) extending the definition of f(a) from
polynomials to entire functions in a continuous way.

In the sequel, we will often refer to the endomorphism f(T ) ∈ EndBan(V ) obtained “from
classical functional calculus.” By this, we mean the endomorphism obtained from the application
of f to T as an element of the Banach algebra EndBan(V ) in the sense of Proposition 5.3.

5.3. Liquid functional calculus. Suppose given E ∈ D(C,M<p) such that the internal hom,
End(E), lies in the subcategory DBan(C,M<p). The goal of this section is to make sense of f(T )
for any T ∈ End(E) and any entire function f in such a way that the maps Hi(−) induced by f(T )
coincide with the operators obtained from classical functional calculus.

14i.e. the underlying topological space is completely metrizable.
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5.3.1. Let f(z) =
∑∞

i=0 aiz
i be an entire function of a single variable. Since End(E) ∈ D(C,M<p),

the following morphism of condensed C-module mapping spectra15 is equivalent,

HomD(C)(M<p(S),End(E))→ HomD(C)(C[S],End(E)),

for any profinite set S. The latter, in turn, is equivalent as a condensed spectrum to HomCond(Sp)(S,End(E)),

because C[S] is the free object on S in D(C) (i.e. is the left adjoint to the forgetful functor
D(C)→ Cond(Sp)).

Definition 5.4. Observe that S := N ∪ {∞} is a profinite set. Let f be as above. The element
µf ∈ C[S] is defined by the assignment

n 7→
√
an

∞ 7→ 0.

Proposition 5.5. The measure µf is an element of M<p(S).

Proof. Consider S as the projective limit of the (totally ordered) finite sets Si := {0, . . . , i,∞},
where the transition maps fj>i : Sj → Si for the directed diagram are given by

fj>i(x) =

{
x if 0 ≤ x ≤ i
∞ if x > i

.

Recall that for any finite set T ,

R[T ]`p≤c := {(at)t∈T ∈ R[T ]|
∑
t

|at|p ≤ c},

where c > 0, and that for a profinite set, T = lim←−i Ti,

Mp(T ) :=
⋃
c>0

lim←−
i

R[Ti]`p≤c.

We claim that µf ∈Mp(S) for any 0 < p ≤ 1. Indeed, observe that R[S] ' lim←−iR[Si] and consider

the element µi ∈ R[Si] given by the assignment n 7→ √an, ∞ 7→ 0. Clearly, µf = (. . . , µi, . . . , µ0) ∈
lim←−iR[Si] under the identification of R[S] with the projective limit lim←−iR[Si].

It now suffices to show that µi ∈ R[Si]`p≤c0 , for some c0 > 0 independent of i. Since f(z) is
holomorphic, its power series representation

∑∞
i=0 aiz

i is absolutely convergent for any value of z.
In particular, by Lemma 5.12 and Lemma 5.14 stated at the end of this section, we obtain that
the series

∑∞
i=0 |ai|p is convergent. Applying Lemma 5.14 a second time to this latter series, we see

that
∑∞

i=0

∣∣√ai∣∣p is convergent. Since
∑m

i=0

∣∣√ai∣∣p ≤∑∞i=0

∣∣√ai∣∣p for any choice of m, we may take
c0 :=

∑∞
i=0 |
√
ai|p. Thus, µf ∈Mp(S).

Finally, recall that M<p(T ) :=
⋃
p′<pMp′(T ) for any profinite set T . Since µf ∈ Mp(S) for any

fixed 0 < p′ ≤ 1, it belongs in particular to Mp′(S) for some p′ < p, and therefore belongs to
M<p(S). �

Proposition 5.5 allows us to make sense of the application of f to an endomorphism of E. Let
T ∈ End(E) be an endomorphism of E, and denote by ϕT,f : S → End(E) the map of condensed
spectra given by the assignment,

n 7→
√
an · Tn

∞ 7→ 0,

15See Lemma 4.4 for proof of the existence of internal hom in D(C) and the discussion above for remarks about
the underlying condensed spectra of an object in D(C).
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where we note that this indeed defines a map of condensed spectra by the fully faithful embedding
of spectra into condensed spectra. Since End(E) is p-liquid for any 0 < p ≤ 1,

HomC(M<p(S),End(E))
'−→ HomCond(Sp)(S,End(E))

is a equivalence of condensed spectra. Thus, ϕT,f extends to a map ϕ̃T,f : M<p(S)→ End(E).

Definition 5.6. Define f(T ) ∈ End(E) to be the endomorphism,

f(T ) := ϕ̃T,f (µf ),

given by evaluating ϕ̃T,f on the measure µf ∈M<p(S).

Remark 5.7. Observe that if E ∈ Liqp(C) ⊂ D(C,M<p), the spaces of morphisms, HomD(C)(M<p(S), E)
and HomCond(Sp)(S,E) are discrete. Thus, if E is p-liquid as a C-module spectrum, it is p-liquid as

a C-vector space in the sense of [CS20, Theorem 6.5]. Moreover, the extension f̃ : M<p(S)→ E of
a map f : S → E is the unique extension guaranteed by [CS20, Theorem 6.5], as well.

5.4. Comparison of liquid to classical functional calculus. It remains to show that, if E is a
Banach space viewed a condensed C-vector space, the notation f(T ) is compatible with its meaning
coming from classical functional analysis.

Given a profinite set S, let M(S) be the real vector space of signed Radon measures on S16. Let
W be an arbitrary Banach space. By [CS19, Proposition 3.4], W is M-complete in the sense that
any map f : S →W from a profinite set S extends uniquely to a map of topological vector spaces,

f : M(S)→W

µ 7→
∫
S
fdµ

where the right-hand side is the integral of a Banach space-valued function on a compact measure
space (see [Rud91, Theorem 3.27]).

Every M-complete vector space is p-liquid for any fixed 0 < p ≤ 1; indeed, M<p(S) ⊂ M(S) for

any such p. Moreover, since the extension of f to a function f̃ : M<p(S) → W is unique by the

p-liquid property of W , it follows that f̃ = f |M<p(S).
With the preceding discussion in mind, we state and prove the following lemma, which claims

that a convergent series (equivalently sequence) of terms in W can be viewed as the evaluation of

f̃ on a particular measure.

Lemma 5.8. Suppose that W is a complex Banach space, and let
∑∞

i=0 aixi, xi ∈W , be a conver-
gent series in W such that

∑∞
i=0 ai passes the ratio test.

Let f : S := N ∪ {∞} → W be the continuous function given by the assignment n 7→ √an · xn,
∞ 7→ 0, and let µ be the signed Radon measure on S given by µ(n) =

√
an. Then,

(5.9)

∞∑
i=0

aixi = f̃(µ).

Proof. Firstly, we note that, by Lemma 5.14, µ ∈M<p(S) for any fixed p, so the right-hand side of
(5.9) is well-defined.

16See [CS19, Exercise 3.3] for more context.
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By the preceding discussion, we have that f̃ = f |M<p(S), so

f̃(µ) = f(µ)

=

∫
S
fdµ

=
∞∑
i=0

aixi,

by the definition of the integral,
∫
S fdµ. �

In particular, suppose W := End(V ) is the Banach algebra of bounded linear operators on a
given Banach space V . As a Banach space, End(V ) is p-liquid, so the map ϕT,f : S → End(V )
given by n 7→ √an · Tn, ∞ 7→ 0 for T ∈ End(V ) extends uniquely to a map,

ϕ̃T,f : M<p(S)→ End(V ).

The following corollary follows immediately from Lemma 5.8 and Remark 5.7.

Corollary 5.10. Let µf ∈M<p(S) be as in Proposition 5.5. Then

ϕ̃T,f (µf ) = f(T ),

where the right-hand side denotes the operator given by the convergent sum
∑∞

i=0 aiT
i, in the strong

operator norm.

5.5. Passing to homology. Let E ∈ D(C,M<p) and T ∈ End(E) be as before. Then T induces
endomorphisms of the homology groups of E (with respect to the t-structure on D(C,M<p)), via
the homology functor, H i : D(C,M<p) → Liqp(C). Namely, for each i ∈ Z, we obtain a map of
condensed liquid vector spaces

Hi(−) : End(E)→ End(Hi(E))

by functoriality. Since it was assumed H i(E) lies in the image of Banach spaces inside of p-liquid
vector spaces, these endomorphisms are bounded operators on complex Banach spaces, so f(Hi(T ))
for an entire function f is easily defined classically. The following proposition asserts that the
condensed functional calculus we have defined recovers the classical functional calculus upon taking
homology.

Proposition 5.11. The induced map on homology,

Hi(f(T )) : Hi(E)→ Hi(E),

are given by the Banach space endomorphism obtained via classical functional calculus by applying
f to

f(Hi(T )) : Hi(E)→ Hi(E).

Proof. Consider the map ϕT,f,i : S := N ∪ {∞} → End(Hi(E)) given by the assignment,

n 7→
√
an ·Hi(T )n

∞ 7→ 0.

The target of this map is a p-liquid vector space, so ϕT,f,i extends uniquely to a map ϕ̃T,f,i :
M<p(S) → End(Hi(E)). By Corollary 5.10, ϕ̃T,f,i(µf ) is the endomorphism f(Hi(T )) given by
classical functional calculus.

Thus, it remains to show that

Hi(ϕ̃T,f (µf )) = ϕ̃T,f,i(µf ).
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In order to see this, we show that Hi ◦ ϕ̃T,f is an extension to M<p(S) of the map ϕT,f,i, since such
an extension is unique by the definition of p-liquid vector space. Pictorially, we have

S End(E) End(Hi(E))

M<p(S)

HiϕT,f

ϕ̃T,f
Hi(ϕ̃T,f )

from which we see that (Hi ◦ ϕ̃T,f )|S = Hi ◦ ϕT,f .

Since Hi : D(C,M<p) → D(C,M<p)
♥ ' Liqp(C) is an additive functor of categories enriched

over condensed C-vector spaces, Hi : End(E) → End(Hi(E)) is C-linear. As such, we have the
equality,

Hi(c · Tn) = c ·Hi(T )n

for any natural number n ∈ N and complex scalar c ∈ C. Computing, we obtain

(Hi ◦ ϕT,f )(n) = Hi(
√
an · Tn)

=
√
an ·Hi(T )n

= ϕT,f,i(n).

To conclude, we observe that (Hi ◦ ϕT,f )(∞) = 0. �

5.6. Postponed lemmas. We state and prove two lemmas on the ratio test for convergence of
series that were used in the proof of Proposition 5.5.

Lemma 5.12. Let f(z) =
∑∞

i=0 aiz
i be any entire function of a single complex variable. Then the

series
∑∞

i=0 |ai| passes the ratio test for convergence.

Proof. For fixed n ∈ N and z ∈ C, we have the following equality,∣∣∣∣an+1z
n+1

anzn

∣∣∣∣ =

∣∣∣∣an+1

an

∣∣∣∣ |z| .
Taking the limits as n→∞, we obtain

(5.13) lim
n→∞

∣∣∣∣an+1z
n+1

anzn

∣∣∣∣ =

(
lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣) |z|.
Since

∑∞
i=0 aiz

i is absolutely convergent for all z ∈ C, the left-hand side of (5.13) converges to a
value ≤ 1 for any value of z, for otherwise

∑∞
i=0 aiz

i would diverge by the ratio test. Now, take any
z = z0 such that |z0| > 1 to obtain that

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1,

which was to be shown. �

Lemma 5.14. If
∑∞

i=0 ai passes the ratio test, then
∑∞

i=0 ai
r does too, for any fixed 0 < r.

Proof. We compute, ∣∣∣∣an+1
r

anr

∣∣∣∣ =

∣∣∣∣(an+1

an

)r∣∣∣∣ =

∣∣∣∣an+1

an

∣∣∣∣r .
Since (−)r is a continuous function of a complex variable,

(5.15) lim
n→∞

(∣∣∣∣an+1

an

∣∣∣∣r) =

(
lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣)r .
By assumption, limn→∞

∣∣∣an+1

an

∣∣∣ < 1, so the right-hand side of (5.15) is also < 1, proving the

lemma. �
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6. Functional calculus in Perf

The results of the previous section allow us to define things such as the exponential of an
endomorphism in Vectb(C) of an object with finite dimensional homology spaces (i.e. a perfect
complex), as we show in this section.

Lemma 6.1. Ban is an additive category.

Proof. Clearly, the hom-sets in Ban are abelian groups: the point-wise sum of any two bounded
linear operators is again a bounded linear operator. The composition of morphism in Ban is also
clearly bilinear, so Ban is enriched over Ab. It remains to check that Ban admits finite products.
The product of two Banach spaces V1 and V2 is canonical a Banach space under several equivalent
norms, such as the max norm: ‖ · ‖V1×V2 := max(‖ · ‖V1 , ‖ · ‖V2). �

Since Ban is additive, we can consider its category of chain complexes, Ch(Ban), which is also
additive.

Remark 6.2. Neither Ban nor Ch(Ban) are abelian. In fact, one can see the theory of p-liquid
vector spaces as a remedial solution to this fact.

Notably, this embedding is additive. The functor Ban ↪→ TVectcomp
l.c. obviously preserves finite

products; we claim that TVectcomp
l.c. ↪→ Liqp(C) does too. In fact, we prove a stronger claim.

Lemma 6.3. The fully faithful embedding TVectcomp
l.c. ↪→ Liqp(C) preserves limits17.

Proof. By [CS19, Proposition 1.7], the embedding Topκ ↪→ Condκ of κ-compactly generated topo-
logical spaces into κ-condensed sets is a right adjoint functor, so preserves limits. Thus, it suffices
to show that the forgetful functors, oblv1 : TVectcomp

l.c. → Topκ and oblv2 : Condκ(C) → Condκ,
reflect limits.

We begin with oblv1. By [nLa22, Proposition 3.3], a conservative functor reflects any limits that
exist in the domain and which it preserves. The functor oblv1 is conservative by [Rud91, 2.12
Corollaries (a) and (b)], so it suffices to show that oblv1 preserves all limits. By [Stacks, Lemma
4.14.11], it suffices to check that oblv1 preserves products and equalizers. Products are preserved
under the forgetful functor, since the underlying topological space of a product in TVectcomp

l.c. has
underlying topological space given by the Cartesian product of the underlying topological spaces of
each of the factors. Since TVectcomp

l.c. is an additive category, it suffices just to check that equalizers
of the form,

V W,
f

0

i.e. kernels, are preserved. But the kernel of f in TVectcomp
l.c. is given by the vector subspace f−1(0),

since this is automatically closed, and therefore complete. We now conclude by noting that the
underlying topological space of f−1(0) is precisely the fiber product ∗ 0×fV taken in Topκ.

We employ the same strategy to show that oblv2 reflects limits. The forgetful functor oblv2 is
conservative and preserves limits for general sheaf-theoretic reasons: Condκ(C) is the category of
modules over a sheaf of rings on a small site (Profκ), so the forgetful functor to the category of
Set-valued sheaves is conservative by [HA, Corollary 3.4.4.6], and preserves limits by [HA, Corollary
3.4.3.2]. Thus, oblv2 reflects limits, which concludes the proof. �

Since all norms on a finite dimensional complex vector space are equivalent and complete, and

any linear map between such objects is bounded, there is an inclusion Vectf.d.C ↪→ Ban where we

17cf. [CS19, Remark 1.8]
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view Ban as a full subcategory of TVectcomp
l.c. . It is not hard to see that this inclusion is an additive

functor, so composing with (5.1), we obtain the fully faithful, additive functor,

(6.4) (−) : Vectf.d.C ↪→ Liqp(C),

of abelian categories.

Warning 6.5. The embedding (6.4) is not the restriction of the embedding VectC ↪→ Cond(Ab)
given by viewing C as a discrete topological ring and sending an object in VectC to a Cdisc-module
in condensed abelian groups.

Lemma 6.6. The embedding (Vectf.d.C ,⊗)
(−)

↪−−→ (Liqp(C),⊗Liqp) is exact and symmetric monoidal.

Proof. To show that (−) is exact, we must show that it preserve finite limits and colimits. We

have that (−) preserves finite limits by Lemma 6.3, so we need only show that it preserves finite

colimits. For this, it suffices by [Stacks, Lemma 4.14.12], to show that (−) preserves cokernels and
finite coproducts.

Recall that (−) sends an object V ∈ Vectf.d.C to the sheaf given by the assignment

S 7→ HomTop(S, V ),

for S an extremally disconnected profinite set, where V is considered with its canonical Euclidean

topology. For objects V,W ∈ Vectf.d.C , the presheaf given by

S 7→ V (S)⊕W (S)

is actually a sheaf because sheafification commutes with colimits as a left adjoint functor. This
sheaf is the coproduct V ⊕W . Then we have

V ⊕W (S) = V (S)⊕W (S)

= V (S)×W (S)

= HomTop(S, V )×HomTop(S,W )

= HomTop(S, V ×W )

= (V ×W )(S)

= (V ⊕W )(S),

where V (S) ⊕W (S) = V (S) ×W (S) because ⊕ and × here are taken in Ab, where they coin-
cide. Thus, (−) preserves coproducts. The proof that (−) preserves cokernels is similar, using that
cokernels are colimits.

Finally, to see that (−) is symmetric monoidal, we note that Vectf.d.C is a full subcategory of

the category of dual nuclear Fréchet spaces, which embed in the obvious way into Liqp(C) as a

subset of nuclear spaces18. Now we turn to Scholze’s initial post on the Xena Project blog ([Sch20])
putting forth the mathematical formalization challenge known as the “Liquid Tensor Experiment,”
in which he mentions that ⊗Liqp agrees with the usual completed tensor product on nuclear spaces,
so we are done. �

Observe that both Vectf.d.C and Liqp(C) have enough projectives. Indeed, all objects in Vect♥C are

projective, and since Vectf.d.C is a full subcategory of Vect♥C , all of its objects are projective as well.
On the other hand, Liqp(C) is generated by compact projectives ([CS20, Theorem 6.5]). By [HA,
Proposition 1.3.3.2] in conjunction with Lemma 6.6, we therefore obtain a canonical right t-exact
functor of right-bounded derived ∞-categories,

D : D−(Vectf.d.C )→ D−(Liqp(C)).

18See [CS22, Lecture VIII] for the definitions of dual nuclear Fréchet space and nuclear space in this context.
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Lemma 6.7. The functor D is t-exact, fully faithful, and symmetric monoidal.

Proof. We first show that D is fully faithful. The categories D−(Vectf.d.C ) and D−(Liqp(C)) admit

descriptions as Ndg(Ch−(Vectf.d.C )) and Ndg(Ch−(Liqp(C)
proj

)), respectively, where Ch−(A) denotes

the right-bounded chain complexes in the additive category A and Ndg is the differential graded

nerve of a differential graded category19.

Let Vn ∈ Vectf.d.C ⊂ TVectcomp
l.c. be a vector space of dimension n, and choose a basis {vi}i∈Sn for

Vn, where Sn is an index set of cardinality n. Then Vn ' M<p(Sn), so Vn is a projective p-liquid

vector space. This shows that Vectf.d.C actually embeds as a full subcategory of Liqp(C)
proj

. This

embedding induces a functor of differential graded categories,

(6.8) Ch−(Vectf.d.C )→ Ch−(Liqp(C)
proj

).

We claim that the functor given by the application of Ndg to (6.8) is D. To see this, note that by

[HA, Theorem 1.3.3.2], D is the (essentially) unique extension F of (−) : Vectf.d.C → Liqp(C) to

derived categories such that (−) = τ≥0◦(F |D−(Vectf.d.C )♥
). Now conclude by observing that Ndg((6.8))

satisfies this property.
Using [HA, Remark 1.3.3.6], we have that D is t-exact because the underlying functor on hearts,

Vectf.d.C → Liqp(C), is exact by Lemma 6.6. Finally, the symmetrical monoidality of D also follows
immediately from Lemma 6.6. �

6.1. A theorem. Before we state the theorem of this section, we state and prove the following
elementary lemma.

Lemma 6.9. There is a t-exact equivalence of stable ∞-categories,

Perf ' Db(Vectf.d.C ).

Proof. The inclusion Vectf.d.C ↪→ Vect♥C induces by functoriality a t-exact functor

D−(Vectf.d.C ) := Ndg(Ch−(Vectf.d.C ))→ Ndg(Ch−(Vect♥C )) =: Vect−C .

The restriction of this functor to the subcategory of bounded complexes induces a map,

Db(Vectf.d.C )→ Perf

by the definition of Perf. This functor is essentially surjective by the definition of Perf, and
is fully faithful because the differential graded nerve preserves fully faithfulness (essentially be-
cause the Dold-Kan functor preserves equivalences) and the map of differential graded categories,

Ch−(Vectf.d.C )→ Ch−(Vect♥C ) is fully faithful. �

We are now able to state and prove our theorem.

Theorem 6.10. Suppose given X ∈ Perf and T ∈ EndPerf(X). Then for any entire function f ,
there exists an endomorphism f(T ) ∈ EndPerf(X) such that Hi(f(T )) is the linear map f(Hi(T ))
obtained from classical functional calculus by applying f to the induced map Hi(T ) : Hi(X) →
Hi(X).

Proof. Lemma 6.9 in conjunction with Lemma 6.7 tells us that Perf admits a t-exact fully faithful
embedding into Db(Liqp(C)). On the other hand, the latter category is equivalent to Db(C,M<p) by

Proposition 4.18, so we have a fully faithful embedding, Perf ↪→ Db(C,M<p) whose essential image

19See [HA, Definition 1.3.1.1] for the definition of differential graded category, [HA, Construction 1.3.1.6] for
the definition of differential graded nerve, and [HA, Definition 1.3.2.1] the differential graded category structure on
Ch−(A).
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clearly lies in the full subcategory, DBan(C,M<p), of objects with homology objects belonging to
the essential image of Ban ↪→ Liqp(C). We denote this embedding by

D : Perf ↪→ DBan(C,M<p).

By the discussion in Section 5.3 combined with Proposition 5.11, f(D(T )) exists, and induces the
endomorphisms f(H∗(D(T ))) upon taking homology. Since D is fully faithful, f(D(T )) corresponds
to an endomorphism in Perf which we denote f(T ) ∈ EndPerf(X). Finally, since D is t-exact,
H∗(f(T )) corresponds under D to the liquid endomorphism f(H∗(D(T ))). �
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